Note

A short synthesis of 1,2,3-tris(tert-butyldimethylsilyl)-6,7-dideoxy-6-C-methyl- α -D-gluco-heptofuran-6-enose from D-glucurone*

Mezher H. Ali, Peter M. Collins[†], and W. George Overend

Department of Chemistry, Birkbeck College, University of London, Gordon House, 29 Gordon Square, London WC1H OPP (Great Britain)

(Received December 1st, 1990; accepted for publication, January 24th, 1991)

The titanocene methylidene complex 1 converts esters and lactones into enol ethers, which is not possible with conventional phosphorus-containing Wittig-type reagents^{1,2}. The complex 1 is generated from the pure Tebbe reagent 2³ either directly, or in an aluminium-free state via Grubbs titanacyclobutane 3^{2,4,5}. Recently⁵, dimethyltitanocene has also been shown to methylenate carbonyl compounds.

Unfortunately, commercially available pure **2** is expensive because rather troublesome special techniques are required to isolate it in pure form⁶ from the trimethylaluminium titanocene dichloride mixture used in its synthesis. Consequently, this led us⁷ and others⁸ to develop a simple method for methylenating carbonyl compounds, which employs the crude reaction mixture used to prepare reagent **2**. The excess of organoaluminium compounds present did not usually interfere^{7,8} with the methylenation of carbonyl groups, as found in reactions that ran for 1.5 h with sugar aldehydes, ketones, esters, and δ -lactones; with γ -lactones; lactols were formed, whereas with pure **2** these γ -lactones also gave enol ethers⁹.

We now report how the tris(tert-butyldimethylsilyl) derivative **4** of β -D-glucuro-no-6,3-lactone reacts under these methylenation conditions. The tris-silyl derivative **4** was readily prepared (80%) from D-glucurone after chromatography, to remove the 10% of the α anomer.

Thus, treatment of a solution of 4 in toluene with a mixture of titanocene dichloride and trimethylaluminium (2.1 and 4.3 mol, respectively) gave, after 90 min, a high yield of the tris-silylated olefinic sugar derivative 9. This material was shown not to be the olefin 5, formed by simple Wittig-type methylenation, since the molecular weight (determined by f.a.b.-mass spectrometry) and chemical composition indicated that two carbon atoms had been added to the lactone. This conclusion was borne out by the ¹³C-n.m.r. spectrum, which indicated 9 to be a tris(*tert*-butyldimethylsilylated) 6,7-

^{*} Dedicated to Professor Grant Buchanan on the occasion of his 65th birthday.

[†] To whom correspondence should be addressed.

dideoxy-6-C-methyl-6-heptenose because, in addition to signals for the three protecting groups, there were three signals for the $CH_3C = CH_2$ group, one for an anomeric carbon, and four for the other carbons of the sugar. The ¹H-n.m.r. spectrum confirmed this gross structure, verified that the stereochemistry was unchanged from that of the lactone, and revealed that the hydroxyl group (J 10.3 Hz) was coupled to H-5 and not H-3, the former signal being identified easily by its broadened shape due to allylic coupling. Consequently, the 5-O-silyl group had migrated during the reaction.

The heptenose **9**, which is a useful synthon¹¹, may be readily acquired in two easy steps from an inexpensive member of the natural chiral pool and is currently being used for chain elongations and nitrone cyclisations¹². On reduction with hydrogen (Pd/C), **9** gave the gem-dimethyl branched-chain sugar derivative **10**, as indicated by the n.m.r. signals for the Me₂CH group (δ_C 16.3 and 19.9; δ_H 1.12 (d), 1.13 (d. J 7.0 Hz); δ_C 31.5 and a septet of doublets at δ_H 2.30 (J 2.5 Hz and 6 × J 7.0 Hz).

The formation of 9 requires the addition of two mol of 2 to the lactone. This outcome probably arises from the reaction of 2 with the enolether 5, which is formed by methylenation of the lactone 4 as revealed by t.l.c. in the early stages of the reaction. This is a reasonable proposal since 2 will react^{2,4} with olefins (e.g., 5) to give metalcycles (e.g., 6). Hydrolysis at this stage would afford the 5-O-silylated heptenose, which would require the silyl group to migrate to afford 9. Alternatively, it is possible that the migration occurred prior to hydrolysis as shown in $6 \rightarrow 7 \rightarrow 8$.

The reason for the dimethylenation is not clear. The bicyclic structure of **4** is not entirely responsible, since the 1,2-di-O-methyl and the 1,2-O-isopropylidene derivatives of 5-O-methyl- α -D-glucurono-6,3-lactone give, under identical reaction conditions, lactols in high yield, accompanied only in the second example by a little (9%) heptenose derivative. The difference in anomeric configuration could play a role, or the migrating silyl group might exert an effect, pulling an equilibrium towards the structure **8** and thereby inducing the formation of a metalacycle.

EXPERIMENTAL

General. — Melting points were determined with a Mettler FP82 hot-stage apparatus and are uncorrected. Optical rotations were determined with an Optical Activity polarimeter Model AA-100 for solutions in CH₂Cl₂. Evaporations were conducted under reduced pressure at 40°. Flash-column chromatography was performed on columns of SORBSILTH C60 silica gel (60–120 mesh). T.l.c. was performed on Silica Gel 60 F₂₅₄ (Merck). ¹H-N.m.r. spectra (internal Me₄Si) were recorded with a Jeol JNM GSX 270 instrument. I.r. spectra were measured in Nujol with a Perkin–Elmer 597 instrument. Mass spectrometry was performed with a VG ZAB-SE instrument operated at 8 kV.

1.2.5-Tris-O-(tert-butyldimethylsilyl)- β -D-glucurono-6.3-lactone (4). To a stirred solution of D-glucurono-6.3-lactone (1.0 g. 5.68 mmol) in N,N-dimethylformamide (12 mL) was added excess of imidazole (3.5 g) followed by an excess of tert-butyldimethylsilyl chloride (3.5 g). The mixture was stirred overnight when t.i.e. (light

$$Cp_{2}T_{1} = CH_{2}$$

petroleum–ether, 10:1) revealed a 1:9 α , β -mixture (R_F 0.54 and 0.41, respectively). The mixture was then poured into ice–water and extracted with ether, and the extract was concentrated. Column chromatography (light petroleum–ether, 20:1) of the residue gave 4 (2.35 g, 80%), m.p. $102-104^{\circ}$ (from ethanol–water), [α]_p +24.5° (c 1); ν _{max} 1800 cm $^{-1}$ (C=O). N.m.r. data (CDCl₃): 1 H, δ 5.16 (s, 1 H, H-1) 13 , 4.70 (dd, 1 H, $J_{3.4}$ 6.2 Hz, H-3), 4.50 (d, 1 H, $J_{2.3}$ 4.2 Hz, H-2), 4.26 (d, 1 H, $J_{4.5}$ 0 Hz, H-4), 4.12 (s, 1 H, H-5), 0.84, 0.78, and 0.76 (3 s, 9 H each, 3 1 Bu), 0.08, 0.05, and -0.02 (3 s, 6 H each, 3 Me₂Si); 13 C, δ 173.2 (C=O), 105.8 (C-1), 83.2, 80.3, 79.3, and 71.1 (C-2,3,4,5), 25.7 (C Me_3), 18.4, 18.1, and 18.0 (3 Me₃CSi), -4.5, -4.8, -4.85, -4.9, -5.3, and -5.5 (3 Me₂Si).

Anal. Calc. for $C_{24}H_{50}O_6Si_3$: C, 55.60; H, 9.65. Found: C, 55.75; H, 9.82.

1,2,3-Tris-O-(tert-butyldimethylsilyl)-6,7-dideoxy-6-C-methyl- β -D-gluco-hept-6-enofuranose (9). — 2M Trimethylaluminium in toluene (10.2 mL, 20 mmol) was mixed under argon with titanocene dichloride (2.48 g, 10 mmol) at room temperature. After 72 h, a portion (2.24 mL) of the solution was added to a solution of 4 (0.52 g, 1.0 mmol) in toluene (6 mL), tetrahydrofuran (2 mL), and pyridine (10 μ L) at -40° under argon and

stirred for 30 min. The mixture was warmed to 22° for 30 min, when t.l.c. (light petroleum-ether, 15:1) revealed $4(R_{i}, 0.18)$ and the enol ether $5(R_{i}, 0.70)$. After a further 1 h, all of 4 had been converted into a major (R, 0.57) and two minor products (R, 0.41) and 0.34). The mixture was then cooled to -10° , aq. 15% sodium hydroxide (0.2 mL) was added, followed by ether (50 mL), and the whole mixture was dried (MgSO₄) and concentrated. The residue was filtered through a short pad of silica gel, using light petroleum-ether (15:1), and the filtrate was concentrated. Column chromatography (light petroleum-ether, 40:1) of the residue gave 9, isolated as a colourless oil (0.38 g. 71%), $[\alpha]_0 = 42^\circ$ (c.1.5); v_{max} 3500 cm $^{-1}$ (OH). N.m.r. data: 1 H (C₆D₆), δ 5.34 (s. 1 H. H-1), 5.17 and 4.97 (2 bs, 1 H each, = CH_2), 4.70 (d, 1 H, $J_{3,4}$ 8.8 Hz, H-3), 4.46 (dd, 1 H. $J_{4.5}$ 2.9 Hz, H-4), 4.30 (dd. 1 H, $J_{5.00}$ 11.0 Hz, H-5) [when the hydroxyl group was D_2O -exchanged, this signal collapsed to a d, J_{54} 2.9 Hz, broadened by allylic coupling], 4.29 (s, 1 H, H-2), 3.33 (d, 1 H, exchangeable with D_2O , OH), 1.88 (s, 3 H, MeC =), 1.02, 0.9, and 0.87 (3 s, 9 H each, 3 Bu), 0.31, 0.19, 0.14, 0.06, 0.03, and 0.02 (6 s, 3 H each, 3 Me₅Si); ¹H (CDCl₃), δ 5.1 (s, 1 H, H-1), 4.99 and 4.93 (2 bs. 1 H each. = CH₅), 4.35 (d, 1 H, J_{34} 8.5 Hz, H-3), 4.05 (dd, 1 H, J_{45} 3.3 Hz, H-4), 4.03 (s. 1 H, H-2), 3.90 (dd, 1 H, J_{500} 10.6 Hz, H-5) [when the hydroxyl group was D₂O-exchanged, this signal collapsed to a d, J_{54} 3.3 Hz, broadened by allylic coupling], 3.30 (d, 1 H, exchangeable with D₅O, OH), 1.79 (s, 3 H, MeC =), 0.89 and 0.88 (2 s, 9 and 18 H, 3° Bu), 0.12, 0.11, 0.103, 0.097, 0.09. 0.04 (6 s, 3 H each, 3 Me₃Si); 13 C (CDCl₃), δ 145.7 (C=CH₃), 113.4 (CH₃=C), 103.7 (C-1), 83.9, 81.7, 76.0, and 74.8 (C-2,3,4,5), 25.8 and 25.6 (3 Me₃C), 18.1, 18.0, and 17.8 (3 Me_3C) , 17.6 (MeC =). -4.3, -4.8 (intense), -5.2, and -5.3 (3 Me,Si). Mass spectrum: m/z 532 (M[±]).

1.2,3-Tris-O -(tert-butyldimethylsilyl)-6,7-dideoxy-6-C-methyl-β-to-gluco-hepto-furanose (10). — A solution of 9 (70 mg, 0.13 mmol) in ethanol (4 mL) was hydrogenated for 1.5 h at 1 atm. over Pd/C (10%) (50 mg). T.l.c. (light petroleum-ether, 20:1) then revealed a single faster-moving product ($R_{\rm p}$ 0.55), which was isolated after the usual work-up. Column chromatography (light petroleum-ether, 40:1) of the product gave 10 (60 mg, 85%), [α]₀ = 32 (c 0.2). N.m.r. data (C₆D₆): 1 H δ 5.35 (s, 1 H. H-1), 4.40 (dd, 1 H, $J_{4.5}$ 3.0 Hz. H-4), 4.30–4.18 (m, 3 H, H-2,3.5), 3.36 (d, 1 H, $J_{0.6.5}$ 10.9 Hz, OH), 2.29 (sep of d, 1 H, $J_{6.6.61}$, 7.0, $J_{6.5}$ 2.5 Hz, H-6), 1.14 and 1.13 (2 d, 3 H each, 2 Me), 1.04, 0.89, and 0.88 (3 s, 9 H each, 3 1 Bu), 0.39, 0.22, 0.11, and 0.06 (4 s, 3 H each, 4 MeSi), and 0.04 (s, 6 H, 2 MeSi); 13 C, δ 104 (C-1), 83.9, 82.7, 76.4, and 74.4 (C-2.3,4,5), 31.5 (C-6), 26.5, 25.8, and 25.7 (3 Me_3 C), 19.9 and 16.3 (2 Me), 18.9, 18.2, and 18.0 (3 Me₃C), -4.1, -4.3, -4.5, -4.7, -4.8, and -5.3 (3 Me₈Si). Mass spectrum: m/z 534 (M+).

ACKNOWLEDGMENTS

The Wellcome Trust is thanked for generous support. The authors are indebted to D. W. E. Shipp and P. Rajani for the measurement of the n.m.r. spectra.

REFERENCES

S. H. Pine, R. Zahler, D. A. Evans, and R. H. Grubbs, J. Am. Chem. Soc., 102 (1980) 3270–3272; L. Clawson, S. L. Buchwald, and R. H. Grubbs, Tetrahedron Lett., 25 (1984) 5733–5736; L. F. Cannizzo and R. H. Grubbs, J. Org. Chem., 50 (1985) 2386–2387.

- 2 K. A. Brown-Wensley, S. L. Buchwald, L. Cannizzo, L. Clawson, S. Ho, D. Meinhardt, J. R. Stille, D. Straus, and R. H. Grubbs, Pure Appl. Chem., 55 (1983) 1733-1744.
- 3 F. N. Tebbe, G. W. Parshall, and G. S. Reddy, J. Am. Chem. Soc., 100 (1978) 3611-3613.
- 4 R. H. Grubbs and W. Tumas, Science, 243 (1989) 907-915.
- 5 N. A. Petasis and E. I. Bzowji, J. Am. Chem. Soc., 112 (1990) 6392-6394.
- 6 J. B. Lee, K. C. Ott, and R. H. Grubbs, J. Am. Chem. Soc., 104 (1982) 7491-7496.
- 7 M. H. Ali, P. M. Collins, and W. G. Overend, Carbohydr. Res., 205 (1990) 428-434.
- 8 L. F. Cannizzo and R. H. Grubbs, J. Org. Chem., 50 (1985) 2386–2387.
- C. S. Wilcox, G. W. Long, and H. Sugh, Tetrahedron Lett., 25 (1984) 395–398; T. V. Rajan Babu and G. S. Reddy, J. Org. Chem., 51 (1986) 5458–5461.
- 10 E. W. Calvin, Silicon in Organic Synthesis, Butterworths, London, 1981.
- 11 S. Hanessian, Total Synthesis of Natural Products: The "Chiron" Approach, Pergamon Press, Oxford, 1983; G. W. J. Fleet, Chem. Br., (1989) 287-292.
- 12 P. M. Collins, M. S. Ashwood, H. Eder, S. H. B. Wright, and D. J. Kennedy, *Tetrahedron Lett.*, 31 (1990) 2055–2058.
- 13 J. F. Kennedy, S. M. Robertson, and M. Stacey, Carbohydr. Res., 49 (1976) 243-258; 57 (1977) 205-213.